One New Diterpene Glucoside from the Roots of *Rhododendron molle*

Guan Hu BAO¹, Li Quan WANG¹, Kin Fai CHENG², Guo Wei QIN¹*

¹Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 ²Deprtment of Chemistry, the University of Hong Kong, Hong Kong

Abstract: One new grayanane diterpene glucoside, rhodomoside A **1** was isolated from the roots of *Rhododendron molle* G. Don (Ericaceae). Its structure was elucidated on the basis of spectral analysis.

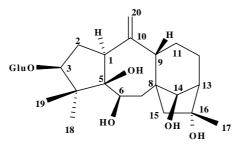
Keywords: Rhododendron molle, Ericaceae, grayanane diterpene glucoside.

As a part of a continuing investigation on the active principles of Ericaceae plants, one new grayanane diterpene glucoside, rhodomoside A, was isolated from the *n*-BuOH fraction of the ethanol extracts of the roots of *Rhododendron molle* G. Don (Ericaceae). In this paper we describe the isolation and structural elucidation of rhodomoside A **1**.

Rhodomoside A **1**, viscous syrup, has the molecular formula $C_{26}H_{42}O_{10}$ based on HREIMS at *m/z* 514.2802 (calcd. 514.2778). Compound **1** gave positive reaction to α-naphthol test. Acidic hydrolysis of **1** afforded glucose as detected by TLC. Furthermore, the ¹H NMR signals (δ 4.00~4.97) and ¹³C NMR signals at (δ 105.44, 75.57, 78.51, 71.76, 78.44, and 62.52) showed great similarity to those of the glucose part of known diterpene glucosides¹, confirming that **1** possessed a glucose unit. Additionally, the ¹H NMR spectrum of **1** showed the signals for three tertiary methyls (δ 1.74, 1.53, 1.18, each 3H, *s*), an olefinic methylene (δ 5.16, 5.06, each 1H, *s*), and three oxygenated methines (4.16, 4.57, 4.44, each 1H). Furthermore, the ¹³C NMR and DEPT spectrum disclosed the presence of three methyls, six methylenes (one olefinic exocyclic), six methines (three oxygenated), and five quaternary carbons (two oxygenated) for the aglycone. The ¹H-¹H COSY spectrum of **1** revealed the following fragments: -CH-CH₂-CH(OR)-, -CH₂-CH(OR)- and -CH-CH₂-CH-CH(OR)-. The above structural features suggested that **1** was a grayanane diterpene glucoside, whose skeleton possessed a 5/7/6/5 membered ring system².

The placement of the exomethylene at C-10/20 was based on the following observations in the HMBC spectrum: the signal at δ 151.92 (C-20) correlated with the signals at δ 3.05 (*t*, 1H, H-1), 2.58, 2.46 (*m*, each 1H, H-2), 2.95 (*br s*, 1H, H-9), 1.59 (*m*, 1H, H-11); and the signals at δ 5.06 and 5.16 (*s*, each 1H, H-20) correlated with the signals at δ 44.87 (C-1) and 52.82 (C-9).

Analysis of the ¹H-¹H COSY, HSQC and HMBC spectra of **1** allowed its structural


Guan Hu BAO et al.

fragments to be determined. In the ¹H-¹H COSY, the signals at δ 2.58 and 2.46 (CH₂-2) correlated with those at δ 3.05 (H-1) and δ 4.16 (H-3), and the signal at δ 4.57 (H-6) correlated with the signal at δ 2.47 (H-7). In the HMBC spectrum, the correlations of hydrogen at C-18 (δ 1.18) and hydrogen at C-19 (δ 1.74) with C-3 (δ 88.65), C-4 (δ 50.96), and C-5 (δ 83.01) were observed. The above data identified the fragment from C-1 to C-7. In addition, C-3 (δ 88.65) showed a long range correlation with the anomeric proton of glucose at δ 4.97 (d, 1H, H-1'), indicating that the hydroxyl group at C-3 is glucosylated. Furthermore, the coupling constant (J = 7.7 Hz) between H-1' and H-2' in the glucose unit suggested a β -orientation of the glucose unit ¹.

Generally, in grayanane diterpenoids with H-1 α , and C-14 β oxygenated group, a strong NOE enhancement was observed between H-1 α and H-14 α^3 . The NOESY correlation between H-1 (δ 3.05) and H-14 (δ 4.44) suggested a *trans*-fused A/B ring system and an α -orientation of H-1 and H-14. Additionally, the NOESY correlation between H-18 and H-3 and H-6 indicated an α -orientation for H-3 and H-6.

Based on the above spectral analysis, the structure of **1** was established, as the 3-*O*-glucoside of a known grayanotoxin II⁴. Much similarity of the ¹³C NMR signals between the aglycone of **1** and those of the known grayanotoxin II except for the signals at/around C-3 further confirmed its structure as 10 (20)-grayanotoxene-3 β , 5 β , 6 β , 14 β , 16 α -pentol-3-*O*- β -D- glucopyranoside.

Figure 1 The structure for rhodomoside A 1

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 30170104)

References

- 1. J. Sakakibara, N. Shirai, T. Kaiya, Y. Iitaka, Phytochemistry, 1980, 19, 1495.
- 2. L. Q. Wang, S. N. Chen, K. F. Cheng, C. J. Li, G. W. Qin, Phytochemistry, 2000, 54, 847.
- 3. L. Q. Wang, G. W. Qin, S. N. Chen, C. J. Li, Fitoterapia, 2001, 72, 779.
- 4. S. F. El-Naggark, R. W. Doskotch, T. M. Odell, L. Girard, J. Nat. Prod., 1980, 43, 617.

Received 14 January, 2002